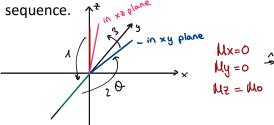
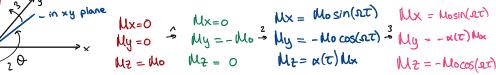

Jigsaw 3A

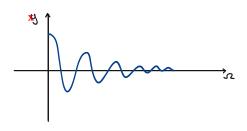
1. * [Keeler Sections 4.7-10] A pulse sequence is shown below.

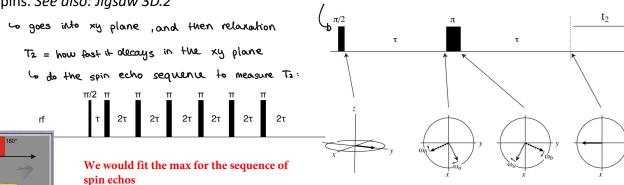



Good! the therms of \alpha(t) is assuming relaxation. Those can be set to 0 assuming there is no relaxation

1.75/2

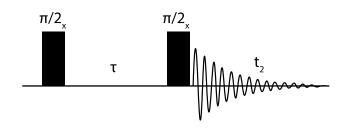
2/2

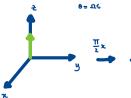

a. Use vector diagrams to predict the outcome of the sequence when applied to equilibrium magnetization. In your answer, set up a table describing the values of x-, y- and z- magnetizations after each element of the pulse


b. For a fixed delay, sketch a graph of the x- and y-magnetization as a function of the offset during t_2 . $\Omega = 0$

- *
- c. At what values of $\Omega \tau$ do any nulls occur?

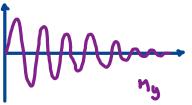
$$\begin{cases}
\Omega T = \pi k & k \in \mathbb{N} \\
\Omega T = \pi k + \pi/2
\end{cases}$$

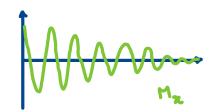

2. [Keeler Section 4.9] What happens to net magnetization after a 90° pulse? How can we measure T_2 ? Draw the pulse sequence and the resulting vector model for two spins. See also: Jigsaw 3D.2


Jigsaw 3A

1. * [Keeler Sections 4.7-10] A pulse sequence is shown below.

2/2


a. Use vector diagrams to predict the outcome of the sequence when applied to equilibrium magnetization. In your answer, set up a table describing the values of x-, y- and z- magnetizations after each element of the pulse sequence.



	z-magnetization	y - magnatisation	2-magnetication
Stant	٥	٥	н
After T22	0	-H _e	٥
After C	Hosin(e)	-H _e ces(e)	٥
After T ₂ R	Masin(a)	0	-17 ₀ ces (9)

b. For a fixed delay, sketch a graph of the x- and y-magnetization as a function of the offset during t₂.

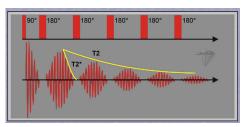
c. At what values of $\Omega \tau$ do any nulls occur?

For
$$M_{y}$$
:
$$\theta = \Delta t \cdot \operatorname{kir} \ \, \operatorname{w} / \ \, \operatorname{k} \in \mathbf{Z}$$
 For M_{χ} :
$$\theta = \Delta t \cdot \operatorname{kir} \ \, \frac{1}{2} + \operatorname{kir}$$

2. [Keeler Section 4.9] What happens to net magnetization after a 90° pulse? How can we measure T2? Draw the pulse sequence and the resulting vector model for two

1.75/2

Good!


spins. See also: Jigsaw 3D.2

After 30° pulse there's no magnetization on the 2-axis. To can The magnetization is flipped on the transverse plane XY

But how can it be measured? The spin echo is right though. Here down an example where the decay of the maximim signal in th eexho can be fitted by an exponential whtat will lead to T2.

